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Abstract.

The average cosine p of the light field created by an isotropic point source

(IPS) embedded in a homogeneous ocean is investigated with a Monte Carlo model.
Two volume scattering functions (VSFs) are used in the model, taken from Petzold
(1972), to compute the radiance distributions at various distances from the source. The
simulated radiance distributions are compared with measurements of the point spread
function made at Lake Pend Oreille, Idaho, during the 1992 optical closure experiment.
An analytic model is presented for @ which is valid to at least 15 optical lengths from
the source. The model shows that the mean light path, derived from p, is a strong
function of the single scattering albedo and the VSF. We found that errors in
estimating the absorption coefficient by neglecting the increase in the mean light path,
which is due to scattering, vary between 5% and 12% for nearly all natural waters. A
mathematical proof is given that i — 1 as the distance to the IPS goes to zero. An
analytic expression is derived for i close to a finite diffuse-isotropic source which
shows that i approaches one as the distance decreases, but at extremely close
distances, i — 1/2 as the distance to the surface of the source goes to zero. At
distances beyond one attenuation length, for finite sources small compared to an
attenuation length, p behaves essentially as it would for a point source. An asymptotic
model for i as a function of the single scattering albedo is given with coefficients that
depend on the VSF. Model results and comparisons with measured PSFs reveal the
surprising result that the light field from an embedded isotropic point source in the
ocean does not exhibit asymptotic behavior as far as 15 attenuation lengths from the

source.

Introduction

The light field due to an isotropic point source (IPS)
embedded in the ocean is interesting to study because this
light field, under suitable mathematical transformations,
provides a wealth of information about the optical properties
of the water. To the extent that the ocean may be thought of
as a linear optical medium, the radiance distribution at each
point in the water due to an embedded IPS is the optical
impulse response (OIR) of the medium. The OIR is com-
monly referred to as the point spread function (PSF), al-
though the PSF for imaging systems is usually defined as the
(output) radiance distribution due to a point Lambertian
source. In this case, the transformation of any input light
field by the optical system is given by the spatial convolution
of the input light field with the OIR. The ocean laser
community defines the PSF similarly because of its equiva-
lence to the beam spread function (BSF), which is the
angular irradiance distribution due to a unidirectional light
beam [Mertens and Replogle, 1977]. In the small-angle range
(less than 10°), both the isotropic- and Lambertian-source
defined PSFs are empirically nearly equal. In general, how-
ever, they should be distinguished.
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Aside from its powerful use as the OIR of an optical
medium, the light field due to an IPS embedded in the ocean
can, in principle, be mathematically transformed to yield all
of the inherent optical properties (IOPs) of the medium.
Sorenson and Honey [1968], for example, conjectured that
the beam attenuation, volume absorption, and backward
scattering coefficients can all be determined from radiance
and irradiance measurements of an IPS. Sorenson and
Honey’s conjectures were experimentally verified as good
approximations [Honey and Maffione, 1992; Maffione, 1993;
Maffione and Honey, 1991; Maffione et al., 1991, 1993].
Wells [1969] first presented the transformation of the PSF to
the volume scattering function (VSF) in the small-angle
approximation. Although Wells’ transformation to the VSF
has yet to be experimentally tested in the sense of closure, it
was recently numerically tested and found to be accurate
within the small-angle scattering limit up to about six atten-
uation lengths [Jaffe, 1995].

To the authors’ knowledge, the only known exact trans-
formation to an inherent optical property from an IPS light
field was presented by Maffione et al. [1993]. They showed
that the absorption coefficient a could be obtained exactly
from the scalar irradiance and divergence of the vector
irradiance by simply transforming Gershun’s [1936] equation
to spherical coordinates. For homogeneous water the prob-
lem reduces to one spatial coordinate, the radial distance r
from the source, and the resulting solution is given by
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2
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is defined as the radial attenuation coefficient for net radial
irradiance E, and

Br) = > 3)

is defined as the radial average cosine. The net radial
irradiance is the difference between the irradiance flowing
away from the source and the irradiance flowing in toward
the source due to scattering. E, is analogous to the vertical
component of the vector irradiance in a Cartesian coordinate
system; Ej is the scalar irradiance. It is understood that all
quantities are spectral. Henceforth, the subscript » and the
adjective radial will be omitted. Comparing (1) to the analo-
gous form of Gershun’s equation,

a=px(r)K(r) 4

reveals that Gershun’s equation is actually a special case of
the more general form (1) when r — . In other words,
Gershun’s equation is the far-field approximation where the
electromagnetic waves are considered plane waves and
horizontal gradients in the electromagnetic field are neglected.

The average cosine L is an apparent optical property
(AOP) since it depends on the structure of the light field. The
importance of Gershun’s equation (4) is that the product of
the average cosine with another AOP, the irradiance atten-
uation coefficient K, yields the absorption coefficient, an
IOP which depends only on the physical properties of the
water. In the more general case (1), the absorption coeffi-
cient is given by the product iK minus the geometric
reduction due to the spherically expanding light field of an
IPS, but this geometric term also contains f. Thus the
average cosine is fundamental to understanding how the
ocean transforms the light field and how that transformation
is related to the absorption of light by the water.

In this paper we investigate the behavior of & from the
radiance distribution due to an IPS embedded in the ocean
using a Monte Carlo (MC) model. The computed radiance
distributions are compared with PSFs that were measured in
Lake Pend Oreille during the Office of Naval Research
(ONR) sponsored optical closure experiment in April-May
1992 [Maffione, 1993; Zaneveld and Pegau, 1993]. Analytical
results are derived on the limiting values of i both for the
case when r — 0 and when r — . We also discuss the case
of a finite source. A simple exponential equation is presented
as a model for & which is valid to at least 15 optical lengths
from the source. The fi model is used to compute the mean
light path, defined by (17), which is then used to accurately
calculate the absorption coefficient. Errors in neglecting the
increase in the mean light path are investigated.

Approach

The MC model uses standard Monte Carlo techniques for
computing photon propagation in an absorbing and scatter-
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Figure 1. Coordinate system for the Monte Carlo model
that computes the radiance distribution due to an isotropic
point source at the origin.

ing medium (see, for example, Mobley [1994, chapter 6]).
Spherical polar coordinates are most appropriate for describ-
ing the radiance distribution L due to an IPS situated at the
origin, as shown in Figure 1. In homogeneous water the
symmetry of the radiance distribution at all points in space
allows L to be specified as a function of one independent
angular variable ¢’ (refer to Figure 1). Along any radial path
from the point source, ¢ is defined as the angle that the
radiance direction vector £ makes with the radial line from
the IPS to the point where the radiance is specified. If, for
example, a radiometer is pointing directly at the source, it is
measuring the radiance in the direction 8 = 0. The symme-
try of the problem also allows L to be specified as a function
of the distance r from the source; the radial direction from
the origin is irrelevant.

Making use of these symmetry properties in the Monte
Carlo simulations greatly reduces computation time. Com-
puting the radiance distribution at a point in space does not
require counting only those photons which cross that point
(strictly speaking, a small area). All of the photons which
cross an imaginary sphere of radius r are tallied according to
the direction ¢ that they are heading when they cross the
sphere to compute the radiance distribution L(r, 6’). Be-
cause it does not matter where on the sphere the photons
cross, by reciprocity it does not matter in which direction the
photons are initially launched. A computational step is saved
by launching all of the photons in one direction. This
simulation is thus analogous to an experiment where the
radiance distribution at all points a distance r from a colli-
mated source is measured and then summed or integrated to
produce the radiance distribution that would have been
measured at a single point a distance r from an isotropic
source. The results are identical because an isotropic source
is equivalent to a collimated source being pointed in all
directions at once.

To simplify the notation, we will henceforth drop the
prime on the angular variable 6, keeping in mind that we are
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Table 1. Optical Parameters for Monte Carlo Simulations
Type a, m™! b, m™! ¢, m™! wg, blc
Deep 0.08 0.08 0.16 0.5
Coast 0.10 0.15 0.25 0.6
Bay 0.30 1.20 1.50 0.8
Milk 0.06 1.14 1.20 0.95

referring to the polar angle in the prime coordinate system
shown in Figure 1. Then & is given by

fﬂ L(r, 8) cos 6sin 6 d6
0

A0 =

f" L(r, 6) sin 6 d6
0

w2
j L(r, 8) cos @sin  do — fﬂ L(r, 0)|cos 6| sin 6 d6
0 w2

/2 T
f L{r, @) sin 6 d6 +j L{r, 8) sin 6 d@
0 /2

&)

_ E.(r)—E_(r)
Eg(r) + Eo-(r)

where the plus and minus subscripts denote the forward and
backward hemisphere irradiances, respectively, defined by
the limits of integration of the separate terms in the second
equation. Because the reduction in computation time by
excluding the calculation of the radiance distribution in the
backward hemisphere is significant, we chose to compute
the radiance distribution only from 0 to #/2. Our estimation
Of "_L,

w2
J L(8) cos 8sin # dé
0

[

ﬁ a2
f L(6) sin 8 d6 ©)
0

E,

Eo,
therefore assumes that E, >> E_ and Ey, >> E,_. The
fact that the VSFs of ocean water are highly peaked in the
forward direction indicates that this ought to be an excellent
approximation. Furthermore, measurements [Honey and
Maffione, 1992; Maffione, 1993; Maffione et al., 1991, 1993]
show that E_/E, < 0.01 for various natural waters. Bear in
mind that this is an excellent approximation for irradiances
due to an IPS and is not meant to apply to comparisons of
downwelling with upwelling irradiances due to solar illumi-
nation of the ocean.

For the present study we define four cases which we refer
to as deep, coast, bay, and milk. The associated volume
absorption, total scattering, and beam attenuation coeffi-
cients are listed in Table 1. These values for a, b, and c,
respectively, were chosen to represent what could be con-
sidered typical, at a wavelength of 530 nm, for clear ocean
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water, coastal water, bay or harbor water, and extremely
turbid water dominated by scattering. The single scattering
albedo, wy = b/c, for these four cases range from 0.5 to
0.95, which encompasses nearly all natural water.

Two different volume scattering functions were used to
investigate the dependence of the radiance distribution and f
on the VSF. Both VSFs are from Petzold [1972], which were
measured at 530 nm with a bandwidth of 100 nm; one is
referred to as station 8 (AUTEC, test 161, July 13, 1971) and
the other as station 11 (HAOCE, August 5, 1971). These two
VSFs were chosen because they yield significantly different
scattering phase functions for the natural waters measured
by Petzold. Figure 2a shows the VSFs, and Figure 2b shows
the cumulative scattering probability functions for these two
stations. The derivative of the scattering probability function
is the scattering phase function. Note that the station 11 VSF
has a higher slope than the station 8 VSF, and this higher
slope results in a higher photon scattering probability func-
tion over all angles.

For each of the four water types given in Table 1, radiance
distributions were computed at seven discrete distances
from the source corresponding to optical lengths of 0.1, 0.5,
1, 3, 6, 10, and 15. Since the attenuation coefficient c is
constant, the optical path length 7 is defined as

T =cr,

which is dimensionless. One optical length, 7 = 1, represents
the distance that a pencil beam of radiance is reduced by a
factor e ! due to absorption and scattering of light out of the
beam. Throughout this paper, numerical results are given in
terms of the optical path length 7, but in the proofs and some
discussions we use the radial distance r for clarity. It should
be clear that the two variables are easily interchanged.

Theory

Limiting Values of the Average Cosine Due to an IPS

The limit r — «. The existence of an asymptotic light
field in a homogeneous ocean was first explored mathemat-
ically by Preisendorfer [1959] and was rigorously proven to
exist by Hgjerslev and Zaneveld [1977]. By its definition the
asymptotic light field is independent of boundary conditions
and is determined solely by the IOPs of the water. Therefore
relationships derived for the asymptotic light field apply
equally well for an IPS boundary condition as they do for
solar, plane-wave illumination. For example, (1) was derived
for an IPS boundary condition and becomes (4), derived for
the daylight illumination boundary condition, as r — .
Without the existence of an asymptotic light field, the
equality of (1) and (4) really only proves that

ﬁrw/ﬁw = Kw/Krm
This ratio is unity because all diffuse attenuation coefficients
become equal in the asymptotic limit. Therefore, in the
asymptotic limit the average cosines for a homogeneous
ocean illuminated by the Sun and embedded with an IPS are
equal.

That the asymptotic average cosines are equal allows us to
use equations for fi. that were derived for the submarine
daylight field. For example, the so-called Wilson-Honey
relationship [Wilson, 1979] for K,/c, namely,
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VOLUME SCATTERING FUNCTION (m™' sr)

Figure 2a.
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Kuc=1-2w,

can be manipulated using (4) to give

l—a)o

b}
l_gwo

Zaneveld [1989] used a second-order expansion

Koc =1~ yj00 = yy04

SCATTERING PROBABILITY FUNCTION

1.0

to fit data from Prieur and Morel [1971] and Timofeeva
[1971] using the coefficients «; = 0.52 and @, = 0.44. The
expression for u, using (4) and (8) is

l1-w
) o= L . ©
1= yiw9— v204
It is interesting to note that although K /¢ does not depend
strongly on the second-order term, ji,, does. We performed
(® aleast squares regression using (9) with data from C. D.
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Figure 2b. Scattering probability functions of the station 8 and station 11 VSFs.
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Table 2. Coefficients for i, Regression to Equation (9)

I
lim L(r, §) = lim — 8,(6)

Eigenmatrix Method? —0 n—x
Empirical,
Coefficients Zaneveld [1989] Station 8 Station 11 I
+ s
" 0.52 0.532 0.666 =3 5(8)
Y2 0.44 0.379 0.280

aMobley [1994].

where I, is the (finite) radiant intensity of the IPS.

13,183

(10

Starting with the definition of & as given by (5) and

applying (10), we see that

Mobley (private communication, 1994) that he computed -
with an eigenmatrix method [Mobley, 1994; Mobley et al., L(r, 6) cos 6sin 8 d6
1993]. Mobley ran the same cases (refer to Table 1) with the

two Petzold [1972]1 VSFs used in our simulations. Table 2 lim f(r) = lim

gives the coefficients and Figure 3 shows the resulting fi, 0 =0 i L(r, 0) sin 8 d6
curves for Wilson-Honey, [Wilson, 1979], Zaneveld [1989], 0
and Mobley [1994].

The limit r— 0. To derive this limit of 1, we must be able -
to specify the radiance distribution as r — 0. Since the area J’ lim L(r, 9)} cos @sin 6 do
of a point source is zero, its radiance is undefined. This does _Jo |0
not, however, prevent us from considering the radiance - 7
distribution due to a point source or the radiance at 6 = 0. j lim L(r, 6)| sin 6 d#@
Conceptually, we may think of the area of the source to be 0 |0

the area that an infinitesimal solid angle subtends at r. As r

— 0, the area decreases as r? and likewise goes to zero. The

radiance distribution must become more and more

peaked since the fraction of photons heading in the direction

fﬂ 8(6) cos @sin 0 d6
0

sharply

# = 0 must greatly increase over the fraction that are n .
scattered into other angles as r — 0. This distribution will j 8(6) sin 6 do
approach a delta function because the radiance at r = 0 0

becomes infinite since the subtended area goes to zero. For

the same reason, the radiance at all other angles goes to _cos (0) sin (0)

zero. Therefore we postulate or assert that the radiance - sin (0)

distribution approaches some delta sequence 8,(8) such that
asr — 0, n — o, and 8,(6) — &(6), the Dirac delta Since this limit evaluates to 0/0, we may apply I’Héspital’s

function. Specifically,

rule, which gives
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Figure 3. Asymptotic average cosine from the Wilson-Honey [Wilson, 1979] and Zaneveld [1989]
equations compared with i, values computed with the Mobley [1994] eigenmatrix method using the
station 8 and 11 VSFs. The dotted lines were computed from a regression using (9).
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cos? (8) — sin%(6)
cos (8)

cos (0) sin (6) .

i - im
-0 Sin (6) -0

=1. V

Therefore fi(0) = 1 for an isotropic point source.

Limit for a finite source. In practice, isotropic point
sources are approximated by finite diffuse (quasi) isotropic
sources [Brown et al., 1991]. If the radius of the source is R,
then the question to be addressed is as follows: What is the
limiting value of zi as r — R? Since a diffuse isotropic source
is a plane Lambertian source at its surface, then from (5) and
(6) we have,

R(R) = lim f(r)

r—R

fﬂ L(r, 0) cos @sin 6 do
0

= lim
r—R

" L(r, 8) sin 6 do
1]

/2 . T .
L, f cos 0sin 0 dé —f L(R, 0) cos @sin 6 d@
0 /2

/2 T .
L,J sin 6 d6 +f L(R, 6)-sin 6 d6
0 w2

Li3— E_(R)
T L, +Ey,_(R)

(12)

[T

where L, is the radiance of the Lambertian source and we
have assumed that L; >> E_(R), E,_(R), which is clearly
true for any realistic volume scattering function. In taking L
out of the integral we have also assumed that R << l/c.
Essentially, we are assuming that the water optical proper-
ties and the relative size of the source is such that, at very
close distances to the source, it will appear as a plane
Lambertian source in air, where the proof holds exactly.

Now consider what happens to & in the region from the
surface of the source to about one optical length (7 = 1). The
source subtends a half angle at r given by sin @ = R/r. Then
2 may be written as

a(r)

f" L(r, 0) cos 0sin 6 d6 + f" L(r, 6) cos 0sin 6 do

0 a

f" L(r, 8) sin 0 do +f"L(r, 0) sin 6 do

0 4

Lsfacos 0sin0d0+fﬂL(r, 0) cos @sin 8 do

0 a

Lsf“ sinodo+J’"L(r, 8) sin 6 d6 (13)

0 @

sin r ]
L, 3 +f L(r, 8) cos 8sin 8 do

a

L2 sin¥af?) + f " L(r, 6) sin 6 d6

[+

which is clearly an excellent approximation since the differ-
ential path to all points on the source is small and thus L, is
nearly constant with angle. In the region r < 1/¢ it should
also be a very good approximation to neglect the second
terms in the numerator and denominator since « will be large
and the radiance of the source dominates the radiance
distribution. Therefore

sin? a (R/r)?

4sin (@/2)  2{1 — {1 - [(RIN T}

= (14)

This function is plotted in Figure 4 with R/r as the indepen-
dent variable. It is evident that although & = 0.5 at r = R, it
rapidly approaches unity in a short distance from the surface
of the source. At distances farther than R/r = 0.1, g will
decrease in nearly the same fashion as it would for a point
source, and the two cases will rapidly become indistinguish-
able as r — . Experimentally then, where finite diffuse
isotropic sources are used, the average cosine of the light
field will be nearly identical to the IPS & at distances greater
than, say, one optical length as long as the radius of the
source is small compared to 1/c.

The Mean Light Path and the Absorption Coefficient

If there were no scattering of light in a homogeneous
ocean, then the irradiance flowing outward from the source
would attenuate geometrically as 1/r? and exponentially
according to Beer’s law as exp (—ar). More precisely,

@,
5 exp (—ar), (15)

E(r) = E.(r) = 7

showing explicitly that the net irradiance E equals the
outward flowing irradiance E . since there is no scattering,
i.e., E_ = 0. &, is the radiant flux of the source.

Scattering increases the geometric distance photons
travel, thereby increasing the probability of photon absorp-
tion. An emitted photon that makes it to a radial distance r
after one or more scattering events will have actually trav-
eled a total distance r + 8r. To compute the irradiance at r,
all photon paths to that point would have to be accounted for
and the resulting calculation would be unwieldy, but
Maffione et al. [1993] showed that the net irradiance is given
exactly by

E(r) = 4:;2 exp (—aF) (16)
where
- dr'
FZLEW) 1

is defined as the mean light path. So we see that 7, which
depends solely on the average cosine, magically takes into
account all of the photon paths when computing net irradi-
ance at a distance r from the IPS.

T
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Figure 4. The average cosine within one optical length of a finite isotropic source where the radius of the

source is one tenth of an optical length.

Comparing (15) with (16) implies that we may write 7 = r
+ &r, where or is defined as the mean increase in the light
path due to scattering. The import of 37 is that it applies to
any geometry, yet nearly all methods for measuring the
absorption coefficient [Pegau et al., this issue] neglect it and
use the geometric distance, analogous to r, for the path
length. The mathematical formulation of the IPS method for
determining a, summarized by (16) and (17), provides an
exact expression for the mean increase in the light path,
namely,

ar(r) = f [_L— 1] dr’ (18)
o |B(r')

which we investigate here with the MC model.

Results
Comparison of Simulations With Measured PSFs

Measurements of the PSF at Lake Pend Oreille, Idaho,
with both plane Lambertian and isotropic sources, provided
us an opportunity to compare the MC model to measure-
ments in natural water. The measurements were conducted
as part of the ONR sponsored optical closure experiment in
April-May 1992. The experimental arrangement is described
by Maffione et al. [1991, 1993]. Briefly, a light source [Brown
et al., 1991] is lowered into the water, and images of the
source are recorded by an integrating CCD camera [Voss
and Chapin, 1990]. The electronic camera is lowered to
some depth, and the distance between the source and
camera are varied by changing the depth of the source.
During the Lake Pend Oreille experiment we used a 50-mm
focal-length lens and a 532-nm interference filter (10-nm
bandwidth) with the camera. This arrangement provided
measurements of the PSF out to nearly 20°, although light
levels were usually noise limited by 15°.

The light source arrangement allowed us to interchange a

flat diffuser with a diffusing globe. The flat diffuser created a
cosine (i.e., plane Lambertian) source with a diameter of 3.8
cm. The diffusing globe created an isotropic source with a
diameter of 12.7 cm. Most measurements at Lake Pend
Oreille were made with the isotropic source. Occasionally,
we made measurements with the cosine source to see how
these PSFs compared with the isotropic-source PSFs. The
advantage of using the flat diffuser is that all of the light
emitted by the light source is initially directed into the
forward hemisphere, toward the camera, allowing us to
measure the radiance distribution at larger angles and at
farther distances from the source than we could when all of
the light is directed isotropically.

On May 6 a series of PSFs were measured using the
isotropic source with the camera held at a 60-m depth. When
the run was complete, the system was immediately hauled to
the surface and the diffusing globe was replaced with the flat
diffuser, creating a cosine source. Then another series of
PSF measurements were made with the camera at the same
depth. The absorption and beam attenuation coefficients
were estimated with the IPS method [Maffione et al., 1991,
1993]. At 60 m they were a = 0.12m ™' and ¢ = 0.40 m ™!
at 532 nm. Thus the single scattering albedo was wy = 0.70.
These optical properties most closely match our ‘‘coast”
PSF simulations (refer to Table 1). Figures 5a-5d show
comparison plots of the measured PSFs with the simulated
coast PSFs at one, three, six, and ten optical lengths for the
simulated data. These optical path lengths roughly corre-
spond to the optical path lengths of the measured PSFs. The
isotropic source PSF is missing in Figure 5d because there
was not enough measurable light at this distance. The PSF
units are arbitrary and were scaled to adjust the vertical
height of the curves for better comparison. We are not
interested in the absolute magnitudes, only the shapes of the
PSFs, which are not affected by our scaling. The scales of
the four plots are identical so that the slopes and their
changes with distance can more easily be compared.
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Figure 5. Comparisons of the Monte Carlo radiance distributions or point spread functions (PSFs) and
the measured PSFs at Lake Pend Oreille during the optical closure experiment. (a) Approximately one
optical length from the source; (b) approximately three optical lengths from the source; (c) approximately
six optical lengths from the source; and (d) approximately 10 optical lengths from the source.

As the distance from the source is increased, the slope of
the PSF will decrease due to multiple scattering of photons
into larger angles that were initially headed at smaller,
forward angles. Figures 5a~5d clearly show the decreasing
slopes at greater ranges for both the modeled and measured
PSFs. The horizontal portion of the measured PSFs are the
sources themselves. The extremely sharp drop-off is an edge
effect caused by the sharp transition in the radiance distri-
bution from directly transmitted plus scattering light to
purely scattered light. For our comparison we are interested
in the portion of the PSF away from source and edge effects.

At a fixed distance from the source the slope of the PSF
will be primarily dependent on the VSF and the w, of the
water. The station 11 VSF yields higher PSF slopes than the
station 8 VSF, as expected, because the former VSF has a
steeper slope than the latter (refer to Figure 2a). A steeper
slope means a higher scattering probability function (refer to
Figure 2b) which implies that a greater fraction of scattered
photons are contained within the smaller scattering angles

causing the PSF to decrease faster with increasing radiance
angle. The slopes of the PSFs were computed at a radiance
angle of about 5° and are plotted in Figure 6 as a function of
optical path length. The slope of the PSF was computed by
a linear regression on a log-log scale. In general, the mea-
sured PSF slopes fall between the model PSF slopes for the
two VSFs used in the simulations. If the slopes at 37 for the
measured PSFs are ignored, the trends for the change in
slopes with optical path length are fairly similar. The anom-
alous slopes at 37 are probably a measurement artifact since
linear trends were found when these plots were made using
slopes computed at angles other than 5°. It is not the intent
here to present an analysis of PSF slopes but rather to
demonstrate that the model gives physically reasonable
PSFs.

Model of the Average Cosine

The average cosine was computed with (6) at the seven
optical path lengths for each water type (refer to Table 1) and
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for the two Petzold [1972] VSFs (stations 8 and 11). Figure 7 A fortunate coincidence of (19) is that it can be integrated
shows the results for station 11. We found that @ fit the to give analytic solutions to (17) and (18). The solutions are
exponential equation

_ _ T 1

B(7) =ko+ ky exp (—ky7) 19 7= = + P In [@(7)] (20)
quite well for all of the simulations. The regression coeffi- 0 02
cients, kg, k, k,, for all of the cases we studied are given in

Table 3. Note that ky + k; sums almost exactly to one in all 1 1
cases, as it should by our proof that g — 1 as 7— 0. We did St = ,-<__ - 1) + ——1n [ (7)] @2n
not constrain the regression to do so. ko kok
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Figure 7. The average cosine as a function of optical path length from an isotropic point source (IPS)
computed from the station 11 VSF simulations. Solid curves were determined from a regression to (19).
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Figure 9. Comparison of average cosines from Monte Carlo simulations at 15 optical lengths with
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al., 1991, 1993]. Taking the natural logarithm of (16) and
rearranging gives

The slope of a linear regression of the measurements of E(r)
to (22a) yields the absorption coefficient, assutning (r) is
known. In practice, 7(r) is not known and (22b) is used to
estimate a. As we showed above, to a very good approxi-
mation, especially near the source, 7 = r.

From our simulations we can now estimate 7(r) using (20)
and investigate the errors in estimating a using (22b). Also,
because the MC model uses a known input value of a, we

D, -
In [r2E(r)]=In (—-) - ar (22a)
47
=In|—1|-ar. (22b)
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Figure 10. Comparison of normalized radiance distributions from Monte Carlo simulations at 15 optical
lengths with asymptotic radiance distributions from eigenmatrix computations.
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Table 4a. Estimates of Absorption Coefficients and
Errors (Petzold [1972] Station 8 VSF)

MAFFIONE AND JAFFE: AVERAGE COSINE OF ISOTROPIC SOURCE

Table 4b. Estimates of Absorption Coefficients and
Errors (Petzold [1972] Station 11 VSF)

Without & Correction With u Correction

_Without zi Correction With i Correction

True a, Estimated a, ; Percent  Estimated a, Percent True a, Estimated a, Percent Estimated a, Percent
Type m! m”! Error m~ Error Type m™! m~ Error m~ Error
Deep 0.080 0.0892 1 0.0807 0.9 Deep  0.080 0.0848 6.0 0.0793 0.9
Coast 0.100 0.115 15 0.102 2.0 Coast  0.100 0.108 8.0 0.0996 0.4
Bay 0.300 0.372 24 0.335 12 Bay 0.300 0.336 12 0.316 5.3
Milk  0.060 0.0807 34 0.070 17 Milk 0.060 0.0708 18 0.0646 7.7

S

can check the accuracy of the MC model and the u model
(19) by estimating a with (22a) since this equation is exact.
The results are summarized in Tables 4a and 4b, where the
last columns give the percent error in estimating a with
(22a). These errors are due to errors in both the MC model
and the g model together since the  model was needed to
compute F(r). The fourth columns give the percent error in
estimating a with (22b), which neglects the mean light-path
increase 6r. These errors, however, include the errors due to
the MC and u models as well as the errors in using the
approximation (22b). Therefore the difference between the
errors in columns 4 and 6 is a better indicator of the errors
due to using (22b) for estimating a. Ignoring the milk runs,
which are not realistic for natural waters, the largest error is
then about 12% (bay, station 8 VSF) and the smallest is
about 5% (deep, station 11 VSF).

One observation of these results is that the error in
estimating a is a strong function of both w, and the VSF.
That the errors should be strongly related to wy is expected,
but the strong dependence on the VSF is somewhat surpris-
ing. The errors roughly double between the station 11 VSF
and the station 8 VSF, yet the scattering probability func-
tions do not differ that greatly between the two VSFs (refer
to Figure 2b). Evidently, however, this difference does have
a significant effect on the mean light path. Figure 11 shows

the differences in the increase in the mean light paths, &7
(station 8) — &r (station 11). Comparing this to Figure 8
shows that the change in 57is over half the magnitude of &7
for the station 11 VSF. ‘

Conclusions

The radiance distribution due to an isotropic point source
embedded in the ocean can, in theory, be inverted to yield all
of the inherent optical properties of the medium. Approxi-
mations have been developed by Sorenson and Honey [1968]
and Wells [1969]. Sorenson and Honey’s approximations can
be used to estimate the absorption, attenuation, and back-
ward scattering coefficients. Wells’ paraxial approximation
can be analytically inverted to yield the volume scattering
function in the small-angle limit. The accuracy of these
approximations depends on the shape of the volume scatter-
ing function as well as the distance to the light source. The
only known exact solution for an IOP derived from an IPS
light field was presented by Maffione et al. [1993]. They
derived the absorption coefficient by transforming Gershun’s
[1936] equation to spherical coordinates. Their derivation
showed that the average cosine m was fundamental to
describing how scattering increases the optical path length
and thus the probability of photon absorption.
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Differences in the mean light-path increase from the station 8 and 11 VSFs.
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A Monte Carlo model that computes the IPS radiance
distribution was compared with point spread functions mea-
sured in Lake Pend Oreille, Idaho [Maffione, 1993]. MC
simulations using volume scattering functions from Perzold
[1972] compared quite well with the measured PSFs (Figures
5a-5d). The slopes of the measured PSFs fell within the
slopes of the simulated PSFs (Figure 6).

For homogeneous water the asymptotic radiance distribu-
tion is only a function of the IOPs and independent of the
boundary conditions [Preisendorfer, 1959; Hgjerslev and
Zaneveld, 1977]. Given the same 10Ps, the asymptotic light
field due to an embedded IPS is thus identical to that for an
ocean illuminated by solar, plane-wave radiation. Compar-
ing the MC results at 15 optical lengths from the source to
eigenmatrix calculations of the asymptotic daylight field
[Mobley, 1994] showed that 15 optical lengths is nowhere
near the asymptotic limit for an IPS light field, even for the
murkiest of waters (wy = 0.95). Using the eigenmatrix results
and a model for the asymptotic i presented by Zaneveld
[1989], new coefficients for the model were computed that
were shown to depend on the VSF (Table 2).

By describing the IPS radiance distribution as a delta
sequence near the source, we proved that u — 1 as r - 0.
For a finite diffuse isotroptic source we showed that i — 1/2
at the surface of the source. If R << 1/c¢, where R is the
radius of the source and c is the attenuation coefficient, then
i rapidly approaches unity very near the surface, and at
distances beyond one optical length 1/c, it behaves essen-
tially as it would for an IPS. On the basis of our MC
simulations we developed a simple analytic model, (19), for
i valid out to at least 15 optical lengths from the source. This
model can be used to compute the mean light path, (17), and
the increase in the mean light path, (18), due to scattering.
The analytic solutions to (17) and (18) based on the model are
given by (20) and (21), respectively.

Sorenson and Honey [1968] argued that the absorption
coefficient a could be estimated using (22b) which does not
depend on the increase in the mean light path due to
scattering and hence assumes g = 1. The exact result, (22a),
was derived by Maffione et al. [1993] and does depend on the
true value of . Our model for f, (19), showed that the errors
in neglecting the increase in the mean light path due to
scattering are, for nearly all natural waters, between 5% and
12% of the true value of a.

Notation
a absorption coefficient, m ™!,
b total scattering coefficient, m~'.
¢ beam attenuation coefficient, m~}.
E net vertical irradiance, W m 2.
E, net radial irradiance, W m 2.
E, scalar irradiance, W m~2.
K diffuse attenuation coefficient for net vertical

irradiance, m !,
1

asymptotic diffuse attenuation coefficient, m ™.
diffuse attenuation coefficient for net radial irradiance,
m~!.

radiance, W m 2 sr
single scattering albedo.
average cosine.
asymptotic average cosine.
. radial average cosine.

=
8

~

-1

FFaE ~
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r geometric linear distance.
F mean light path.
T optical path length.
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